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ABSTRACT This qualitative study examined the influence learning material design has on the learning of geometry
in the middle school curriculum. The middle school mathematics learners (n =82) involved were from two South
African rural schools in the province of KwaZulu-Natal. The research was conceptualised in terms of Vygotsky’s
educational theory and the process of scaffolding. Researchers from a South African university designed questionnaires
based on scaffolding guidelines suggested by Zhao and Orey. The questionnaires comprised of a series of geometry
tasks which spanned two weeks. These questionnaires were administered to the learners and their written responses
were analyzed. After analysis of these responses interviews were carried out to verify or refute the views of the
researcher. Data yielded by these research instruments confirmed certain assumptions and literature claims. The
study revealed that the intervention design effectively managed to integrate the two types of geometries to
strengthen the concept of congruency of triangles. Many recommendations, for the teaching of congruency of

triangles, emanated from the findings.

INTRODUCTION

Adler (2005) focused on the complex issues
involved in the teaching and learning of mathe-
matics. She felt it was important that we under-
stood “how to make mathematics learnable by
all children” (Adler 2005: 2). Her area of interest
is to know more about the support and mathe-
matical preparation that teachers receive and to
make them more efficient and skilful in the class-
room context. Even (1990) also subscribed to this
notion and stated that the way mathematics is
taught is important. The emphasis in recent times
is to teach in such a manner that learners under-
stand so that meaningful learning takes place. The
researcher has been involved in many recent stud-
ies exploring the pedagogical knowledge of math-
ematics teachers (Bansilal etal. 2014; Brijlall 2011;
Brijlall et al. 2012; Brijlall and Isaac 2011; Brijlall
and Maharaj 2011, 2014, 2015). The role of the
teacher is to assist the learner to understand the
subject matter. With this in mind the researchers
in this study embarked on the use of question-
naires to guide learning in geometry with the
hope that conceptual understanding will occur.
In order to provide guidance, with the least as-
sistance from the teacher, the principle of scaf-
folding was employed in the design in the ques-

tionnaires. Similar strategies were employed in
questionnaires by these researchers in aiding
the learning of concepts in calculus. Such stud-
ies were carried out in South African higher ed-
ucation institutions (Brijlall 2011; Brijlall and
Isaac 2011; Ndlovu and Brijlall 2016). However,
this paper reports on a study which is different
in that it is carried out in two rural schools in the
province of KwaZulu-Natal in South Africa. It
was found that these specially designed activi-
ties were appropriate in keeping with the cur-
rent education system in South Africa which
emphasizes that there should be a move towards
learner-centred approaches being included in
instructional strategies (DoE 2003).

Aim and Critical Question

The aim of this research was to generate thick
interpretations of data in the design of ques-
tionnaires to promote scaffolding, written re-
sponses and interviews, in order to explore the
influence of teaching design on learning of ge-
ometry. In questionnaire 1 the design involves
formal reasoning which we define as problem
solving involving the provision of evidence from
axioms, lemmas, corollaries and theorems. If ev-
idence is provided based on measurement and
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practical means then we regard the type of rea-
soning as informal. To unpack the research aim
we asked: How well do grade ten learners un-
derstand congruency of triangles when work-
ing with their transformations as compared to
formal reasoning? To address this fundamental
research query, the following sub-questions
were asked: (a) how well do grade ten learners
understand the four cases of congruency? (b)
to what extent do learners succeed in their con-
ceptual understanding of congruency in Euclid-
ean Geometry? (formal reasoning), (c) to what
extent do learners succeed in their conceptual
understanding of congruency in Transformation
Geometry? (informal reasoning) and (d) how
does informal reasoning make a difference in the
conceptual understanding of congruency in
geometry?

Researchin Euclidean Geometry

Some South African research studies recom-
mended changes in the teaching of geometry in
order to improve understanding (Brijlall et al.
2006; De Villiers 2008; Mudaly 2007). Brijlall et
al. (2006) looked at how learners’ experiences in
a Technology class could be used to inform the
effective teaching of geometry. They recom-
mended that Euclidean Geometry teachers build
upon learners’ intuitive or in-born knowledge of
geometrical shapes (like triangles) in their teach-
ing. This would facilitate the understanding of
van Hiele’s levels one and two: the naming of
shapes and the analysis, respectively (van Hiele
1999).

It should be pointed out that Mathematics
teachers need to master Euclidean Geometry
knowledge before they can engage learners’
learning through a “non-textbook” method.
Adler (2005) argued that mathematics teachers
need to have a conceptual understanding of the
subject. With the intention of supporting con-
ceptual understanding teachers can approach
teaching through different Mathematical per-
spectives, depending on the context (Hall 1999).

In another South African study of the in-
structional strategies followed by grade eleven
teachers, Mthembu (2007) found that many Math-
ematics teachers teach geometry using the non-
constructivist model of the “teacher-talk” meth-
od. In countries like Belgium, teacher-centred
approaches are still followed (Fagnant 2005). It
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is evident that, although many Mathematics
teachers understand the constructivist approach
to learning they tend not to implement it.

Research in Transformation Geometry

The researcher found few studies that looked
at Transformation Geometry in the South Afri-
can context. This shortfall may have occurred
due to this section not having been a part of the
Mathematics syllabus in the past. This section
was introduced post 2005 and hence did not
receive priority for research. International litera-
ture argues that congruent and similar triangles
can be understood better in Transformation Ge-
ometry (Beevers 2001). Proofs of congruency in
Transformation Geometry can be done by expla-
nation instead of verification with younger chil-
dren. Proving congruency by explanation is eas-
ier than the complications of Euclidean Geome-
try as any shape will be congruent to its image
under translation, reflection and rotation
(Fernandez 2005; Rival 1987). This proof by ex-
planation is more convenient in the contempo-
rary education system, where learners are en-
couraged to speak their minds about their ob-
servation of patterns.

History reveals that Transformation Geome-
try was once popular in the discovery of con-
gruent patterns of geometrical shapes, for exam-
ple tiling of pentagonal shapes (Rival 1987).
Fernandez (2005) argued that Transformation
Geometry (DoE 2003) is rich in possibilities of
Mathematical investigation and discussions of
“real-life” situations. The current South African
mathematics syllabus includes Transformation
Geometry. Some mathematics textbooks show
designs of patterns generated through congru-
ent figures. These patterns are used to design,
inter alia, clothes and tiles, and are also incor-
porated into art exhibitions.

Proofs and Proving in High Schools

High school teachers are faced with the chal-
lenging task of teaching proofs. The research-
er’s personal experience as a Mathematics learner
and teacher revealed that many learners did not
understand or enjoy proofs of theorems. This
problem became more pronounced in the prov-
ing of Euclidean Geometryriders. Mudaly (2007)
compiled research findings showing that learn-
ers had been performing poorly in Euclidean
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Geometry in the past two decades. The KwaZu-
lu-Natal Department of Education (KZN DoE
2004) revealed similar findings in recent years.
Sometimes this poor performance results in an
unpleasant atmosphere in the Mathematics class-
room. Indeed, as Davis and Hersh (1983) note,
many teachers become frustrated when learners
do not understand proofs and thus blame learn-
ers for being “stupid”. This tendency is exacer-
bated by the contrast between learners who ex-
perience difficulty in understanding the origins
of a theorem’s proof and a few ‘gifted’ learners
who appear to achieve understanding through
memorization and rote learning for examination
purposes (De Villiers 2008; Mudaly 2007). The
reasons for learners’ poor performance in con-
structing proofs include presenting proofs di-
rectly from the textbook and teaching proofs to
learners who are not at the appropriate van Hiele
level (Mudaly 2007). The promotional require-
ments in South Africa in the middle school phase
allow learners to progress to the next grade whilst
having only attained a minimum pass mark of 30
percent in Mathematics. This means that learn-
ers are likely to move to the next grade without
having mastered geometry tasks at the signifi-
cant van Hiele levels.

The common feeling amongst authors is that
the failure of learners to construct proofs in Eu-
clidean Geometry lies in the means by which
proofs are taught (De Villiers 2008; Mudaly 2007).
A quick perusal of the different Mathematics
textbooks reveal that proving is seen as a verifi-
cation of the truth. For example, proving that the
opposite sides of a parallelogram are equal is
seen to be similar to that of verifying that they
are equal. Some textbooks even phrase ques-
tions such as “verify that the opposite sides of
aparallelogram are equal”. In his study, De Villi-
ers (1990) found that most Higher Education
Diploma students believed that the function of
aproof'is to verify the truth of a statement. This
method of teaching proofs has been criticized
by many authors as it encourages rote learning
to learners — a feature of the old, traditional meth-
od of teaching (Mudaly 2007).

De Villiers (2008) argued that teaching proofs
using explanation can also be done using the
“genetic” approach. This approach involves the
utilization of proof heuristics in contrast to that
of direct textbook methods. In addition, De Villi-
ers (2008) argued that reasoning by analogy can
help stimulate the desire for proof understand-
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ing in learners. Analogy occurs when two fig-
ures share similar characteristics, for example,
where the square is analogous to the cube as
both have all sides equal (although the former is
two-dimensional and the latter three dimension-
al). In this case, a cube is defined by construc-
tive definition as a set of squares put together
to form faces of a three-dimensional shape. How-
ever, De Villiers (2008) admits that this method
of proving may be difficult to adopt as learners
at school level are not likely to have been taught
analogy. Perhaps the time will come when the
contents of Mathematics textbooks might be
transformed into ideas argued by authors who
value proof by explanation.

Euclidean Geometry learning should be
based on an understanding of the basic skills of
the proofs of theorems. Examination questions
are based on unseen problems in which learners
cannot memorize facts but are instead required
to apply their understanding of geometry riders.
Mthembu (2007) argued that success in Euclid-
ean Geometry depends on the knowledge of ba-
sic concepts as it is upon this knowledge that
proofs and solutions of riders rely. Based on the
researcher’s experience, learners find it difficult
to solve non-numerical riders.

According to Skemp (1976), ‘understanding’
may be divided into instrumental and relational.
Instrumental understanding refers to knowing
the procedures and laws of solving a problem.
Relational understanding refers to both know-
ing the procedures and the reasons for choos-
ing them in solving a particular problem. In the
main, OBE supports relational understanding.
Relational understanding in Mathematics seems
to be difficult to achieve as some Mathematics
teachers teach for the purposes of attaining in-
strumental understanding on the part of learn-
ers (Skemp 1976). It is also noted that the exter-
nal examination for the school leavers consists
mainly of questions that encourage instrumen-
tal understanding. Learner-centred approaches
to teaching could be integrated into assessment
in order that teachers might be encouraged to
assimilate them into their teaching.

Learning Congruent Triangles

Congruent triangles are introduced to learn-
ers in middle schools (grade seven) in South
Africa. The knowledge of congruent triangles is
important when learners are preparing for high
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school geometry riders. Mathematics teachers,
many of whom may have mastered the current
learner-centred approach to teaching, teach con-
gruency in group settings using the “cut-and-
match” method of teaching identical triangles.
However, formal proofs of the four cases of con-
gruency are mostly taught as ready-made theo-
rems in the textbook. Luthuli (1996) asserts that
geometry teaching should be more learner-cen-
tred and closely based on learners’ experiences.
Constructivists like Cobb (1994) and Von Gla-
sersfeld (1984), also argued for learner-partici-
pation in Mathematics lessons, where learners
reflect on their learning and are able to commu-
nicate their thoughts to one another and to the
teacher.

METHODOLOGY

Written responses and interviews were the
data-capture instruments used in this research.
The eighty-two participants were first handed
out questionnaires containing two structured
worksheets. The first worksheet was for Euclid-
ean Geometry and the second was for Transfor-
mation Geometry. After the researcher had rated
and analyzed the responses to both question-
naires, ten participants from each school were
each interviewed about their performance in the
two tasks. These ten learners were chosen two
from each of the following mark ranges: 40 per-
cent — 49 percent, 50 percent — 59 percent, 60
percent — 69 percent, 70 percent -79 percent and
80 percent — 100percent which they had attained
in their previous years mathematics examination.
The philosophy impinging the design of the two
questionnaires is now presented.

Questionnaire 1: Euclidean Geometry

This questionnaire (see appendix) was a Prob-
lem-Centred Learning (PCL) activity involving
congruent triangles. The researcher decided to
implement the PCL with its featuring socio-con-
structivist theory. Murray et al. (1992) argued
that PCL engages learners actively in the pro-
cess of acquiring knowledge. The learners also
draw on past experiences and existing knowl-
edge during learning. In this questionnaire, the
learners used their past knowledge of basic
geometry (like parallel lines, isosceles triangles
and alternating angles on parallel lines). The
questionnaire also involves a formal proof of
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congruent triangles. As Mudaly (2007) admits
that it is difficult to relate formal proofto learn-
ers’ past experiences, and the researcher decid-
ed to use a form of guided activity whereby
learners filled in the correct answers in spaces
left intentionally blank. In South African schools,
learners are not guided when doing these proofs
and the researcher suspects that this may result
in greater difficulties in learning such proofs at
this level of schooling. The researcher wanted
to monitor how much relative success learners
enjoyed in determining formal proofs of congru-
ent triangles. Hence, this activity is based on
proof with rigour. This kind of proving by verifi-
cation has been criticised for its lack of improv-
ing learners’ interest and understanding. The
researcher then wanted to observe how learners
would understand and be stimulated to work
out these kinds of proofs. (De Villiers 2008;
Mudaly 2007). De Villiers (2008) further suggest-
ed that it was about time teachers attempt to
teach proofs by explanation using analogies and
heuristics.

Each sub-section of this questionnaire ex-
plored the understanding of a specific case of
congruency. In 1.1 the case of side, side, side (S,
S, S) is involved. To prove this, learners needed
to know that both pairs of opposite sides of a
parallelogram are equal. For 1.2 the learners re-
quired understanding of an isosceles triangle
and the case of side, angle, side (S, A, S). For 1.3
the case of 90°, hypotenuse, side (90°, H, S) is
deduced. Lastly, in 1.4 the case of angle, angle,
side (A, A, S) is tested and the learners needed
to understand properties and results derived
from parallel lines and alternate angles.

The questionnaire was structured so as to lead
learners into deducing the cases of congruency.
The items in this questionnaire rely on the knowl-
edge of the properties of triangles, parallelograms,
parallel lines and quadrilaterals for successful
solving. The questionnaire seeks the understand-
ing of proofs using formal reasoning.

Questionnaire 2: Transformation Geometry

This questionnaire (see appendix) was based
on Transformation Geometry and the tasks were
based on the informal proofs of Geometry rid-
ers. The learners were guided through a practi-
cal activity where they would measure sides and
angles to prove congruency. Initially, the learn-
ers were asked to draw the figure and its image
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on the same Cartesian plane under some kind of
transformation, viz. translation, rotation or re-
flection. If the drawn image did not result in some
kind of constructive defining, which De Villiers
(2008) describes as a new concept created from
the original figure, then the two triangles would
be congruent. It is important for this activity to
successfully stimulate learners’ interest as Aus-
abel et al. (1978) argued that meaningful learn-
ing occurs when learners are curious to deter-
mine the result in a discovery task. This activity
was a guided activity as research has shown
guided learning facilitates an increase in learn-
ers’ discovery (Mudaly 2007).

The purpose of these tasks was to check how
much relative success learners achieve in doing
informal proofs of riders. It is based on the knowl-
edge of the four cases of congruency of trian-
gles. In (a) the case of S, S, S is tested. To suc-
cessfully complete this task, the learners need
to know the rules of translation of points on a
Cartesian plane as well as practical measure-
ments of lines using a ruler. In (b) the learners
were tested on the case of S, A, S. The knowl-
edge of the rules of reflection on the Cartesian
plane, as well as the ability to measure sides and
angles was required in order to answer this ques-
tion. For (c) the case of A, A, S was tested. The
learners need the knowledge of the rules of rota-
tion on the Cartesian plane as well as measurement
of sides and angles. Lastly, for (d) the case of 90°,
H, S was tested along with the learners’ knowledge
of the rules of reflection and measurements.

OBSERVATIONS AND DISCUSSION

Two questionnaires were scaffolded using
the guidelines proposed by Zhao and Orey (as
cited in Lipscombe et al. 2004). The first ques-
tionnaire dealt with four tasks, each based on
one case of congruency of triangles. This ques-
tionnaire was on formal reasoning in Euclidean
geometry. The second questionnaire dealt with
informal reasoning and had four tasks employ-
ing techniques from Transformation Geometry.
We shall look at a task from each activity sheet
and show the overall analysis of results of the
two schools.

Formal Reasoning Task
A convenient coding system was employed

in rating the quality of responses in both schools.
Tasks 1 to 4 were marked out of 8 marks each. In
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the formal reasoning tasks, a rating scale of 0 to
8 was categorized as indicated by Table 1.

Table 1: Coding mechanism

Mark range Category Descriptor
0-2 A Poor

3-5 B Average
6-8 C Good

The results for the two schools in this ques-
tionnaire appear in Table 2. The data for those
learners who were interviewed are shown.

Table 2: Performance of interviewed learners for
tasks on formal reasoning

Mark range 0-2 3-5 6-8
School A - Task 1 10

School B - Task 1 3 7
School A - Task 2 7 2 1
School B - Task 2 5 5
School A - Task 3 1 7 2
School B - Task 3 3 7
School A - Task 4 3 6 1
School B - Task 4 3 7

The data illustrate that the results for School
B was better than those for School A in the 6 —8
mark range. In these instances the better perfor-
mance was due to the written responses show-
ing correct reasons. For school A, all learners
scored in Category B in task 1. On viewing the
responses, it was observed that learners could
provide the correct sides involved. They could
all indicate AB=DC, AD =BC and AC=AC.
However, the reasons provided were incorrect
as shown by the response for learner A,, pre-
sented in Figure 1.

Learner A displayed the misconception that
a pair of parallel lines in a quadrilateral imply
equality of the length of the lines by using the
symbols “="and “//”, as seen in Figure 1. This
misconception could possibly be due to the
trend that most applications of Euclidean Geom-
etry provide quadrilateral figures (like rectangle,
square rhombus and parallelogram), which in-
volve opposite sides equal and parallel. This
may lead learners to believe that when one con-
dition is satisfied then the other is automatic.
Further, as is unusual for learners to deal with
application tasks involving trapeziums, these
tasks may well have exposed the potential lack
of comprehension.
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Prove tht AADC=ACBA by completing the following statements.

Statement

AB =DC

AD = BC
AC=AC
AADC=ACBA

Fig. 1. Written response for learner A,

Indeed, this specific quadrilateral is ideal to
eradicate the above misconception, since it has
exactly one pair of opposite sides parallel and
not equal. In addition, this example could high-
light the view that parallel sides need not be
equal. To eradicate the converse we could pro-
mote the case of an isosceles triangle XYZ with
XY =YZ by observing that XY cannot be paral-
lelto YZ.

A positive note was that (for most of the
learners), learners could identify the correct case
of congruency. This could be that they were
“scaffolded” into the correct conclusion by the
structure of the task.

In order to triangulate the data, an interview
was carried out with learner :

Researcher: “What did you mean when giv-
ing this reason?” (Showing the reason.)

Learner : “AB is parallel to DC.”

Researcher: “So that means that AB = DC?”

Learner : “Ja, like this.” (pointing to the giv-
en diagram.)

Researcher: “So ifthe lines are parallel then
they are also equal?”

Learner: “Ja like this. I don't know. Am I
wrong? They look to be equal.”

(pointing to the diagram again.)

The last response raises another misconcep-
tion that if the opposite sides of a quadrilateral
(like a parallelogram, a rectangle, a square or a
rhombus) look like they are equal, then it is true
that they are equal without a formal reason. This
behaviour seems common in the researcher’s
personal experience of teaching; especially in

Reason

junior classes at high school level. Learners ap-
pear to prefer using visualisation instead of men-
tal construction. This usage may be a factor
which contributes to difficulty in proving Eu-
clidean Geometry theorems and riders as con-
cluded by Mudaly (2007).

Informal Reasoning Task

A convenient coding system was used to
rate the quality of responses in both schools for
the questionnaire addressing informal reason-
ing. Tasks 1 to 4 were marked out of 12 marks
each. The performance of learners was rated from
0 to 12 as shown in Table 3.

Table 3: Coding mechanism

Mark range Category Descriptor
0-3 A Poor

4-6 B Average
7-9 C Good
10-12 D Excellent

The results for the two schools in this ques-
tionnaire follow in Table 4.
The general trend was that School A learn-
ers performed better in the 10 — 12 mark range.
In task one, fifty percent of the learners from
school A scored in Category D, while forty per-
cent scored in Category B. Most of the learners
were able to do draw the diagram and its image
on the Cartesian plane. A negative aspect of the
responses was that some learners presented
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Table 4: Performance of interviewed learners for
tasks on informal reasoning

Mark range 0-3 4-6 7-9 10 -12

School A-Task 1
School B-Task 1
School A-Task 2
School B-Task 2
School A-Task 3
School B-Task 3
School A-Task 4
School B-Task 4

5

4

(W N RN

w
W LW — NN —

NN 9N

incorrect measurements of the sides and were
thus unable to see that the corresponding sides
of the two triangles were equal, contrary to the
intention of the questionnaire.

Most learners correctly drew both diagrams
on a Cartesian plane with the result that they
may have been successful in learning reflections
in their study of transformations. Learner seemed
to be unable to use a protractor when measuring
angles. This is another potential example of the
importance of doing practical measurements of
angles at lower standards. Learner could not
provide a reason for concluding congruency.
However, when the written responses of for ques-
tionnaire 1 were studied, we found that provided
reasons for all tasks. This might have occurred
since children might think that the requirements
for congruency in Euclidean Geometry are not
the same as congruency in Transformation Ge-
ometry. It is therefore important that all sections
in mathematics teaching be linked (especially
when a concept like congruency could be taught
using more than one branch of mathematics).

Fig. 2. Written response for learner
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The discussion between the researcher and
learner is presented below (Fig. 2):

Researcher: “Do you enjoy learning Euclid-
ean Geometry? Why?”

Learner : “Yes, because we measure angles
and side.”

Researcher: “Do you feel that teachers can
use other ways to teach Euclidean Geometry?

Explain.”

Learner : “Yes, by making more examples so
that we understand.”

Researcher: “In questionnaire number two,
what types of transformations are displayed

in each case?”

Learner : “Translation, reflection, rotation
and reflection.”

Researcher: “Which type of transformation
is the easiest to work with?”

Learner : “Reflection not complicated.”

Researcher: “Would you prefer using Trans-
formation Geometry when ideas in

Euclidean Geometry?”

Learner : “yes.”

From this dialogue, learner seemed to be
enjoying Transformation Geometry and congru-
ent triangles. This learner did not correctly mea-
sure the size of the angles but did indicate that
he enjoyed performing such activities in Euclid-
ean Geometry. Again, learner may have been
treating Euclidean and Transformation Geome-
try as two disjoint branches in mathematics.

The analysis of the responses of the learn-
ers in questionnaire 2 appears to show that, de-
pending on how well learners understand Trans-
formation Geometry, learners may be capable of

e
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successfully learning congruent triangles. The
researcher was interested in finding the compar-
ative mean performance of learners in both
schools for each task as this would possibly
provide an overview of how successful learners
had been in understanding Transformation Ge-
ometry through their learning of the congruen-
cy of triangles.

The overall performances in Euclidean Ge-
ometry, as well as in congruent triangles, could
also be observed. Table 5 on the next page shows
comparatively the mean performance of the two
schools in each task of both formal and informal
reasoning.

For each task, School B did well in question-
naire one (involving Euclidean Geometry) and
did poorly in questionnaire two (involving
Transformation Geometry). The converse ap-
peared true for School A learners. The research-
er believes that possibly there were some in-
structional differences of mathematics in the two
schools in terms of Euclidean and Transforma-
tion Geometry teaching as shown in Table 6
where the overall mean performances of the two
schools are comparatively analyzed for the two
questionnaires:

Table S5: Mean performance of schools for each
respective task on both questionnaires

Mean Formal Informal
reasoning reasoning
School A - Task 1 4 8
School B - Task 1 7 4
School A - Task 2 2,3 6
School B - Task 2 6 4
School A - Task 3 4.3 9
School B - Task 3 7 5,2
School A - Task 4 8 8
School B - Task 4 6,2 4

The mean performance for school A in for-
mal reasoning is almost two times lower than
their mean performance in informal reasoning in
all the tasks whilst the mean performance for
school B in formal reasoning is almost two times
higher that their mean performance in informal
reasoning.

Most School A learners were able to cor-
rectly locate triangles on the Cartesian plane
which likely means that the learners had an un-
derstanding of the points in the coordinate sys-
tem. The learners could also locate the image of
the triangle after a performed transformation,
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Table 6: Overall mean performance of the two
schools for both questionnaires

School  Mean performance: Mean performance:
Formal reasoning Informal reasoning

School A 11.9 28.7

School B 23.8 13.3

meaning that the learners had an understanding
of translation, rotation and reflection. Teachers
would need to strengthen learners’ knowledge
on Transformation Geometry as this could con-
tribute to an improvement of their performance
in the final year in high school. Some School A
learners were unable to prove congruency in a
convincing manner as they failed to correctly
measure the sides and angles of the located tri-
angles. Practical measurements of sides and an-
gles are introduced at Senior Phase levels. Hence
failure for learners to find correct measurements
is an indication of the knowledge gaps present
in learners upon their entry to grade ten. Im-
proved facilitation and supervision of the per-
formance of high school teachers in mathemat-
ics teaching could potentially therefore minimize
this problem.

Most School B learners could correctly lo-
cate triangles after having performed transfor-
mation on the Cartesian plane. This appears to
indicate that the learners were familiar with the
coordinate system. However, most learners could
not locate the image after having performed
transformation on a Cartesian plane. This means
that the comprehension of translation, rotation
and reflection of the learners needs to be im-
proved. This understanding may be improved
by encouraging mathematics teachers to con-
duct their reflection after lessons in order for
them to identify the strengths and weaknesses
oflearners. This could potentially aid in making
an informed decision about the strategies of im-
provement for their Integrated Quality Manage-
ment System (IQMS). The IQMS is a mechanism
employed in the South African education sys-
tem to ensure professional teacher growth.

School B learners who were successful in
proving congruency used their knowledge of
Analytical Geometry. It was encouraging to find
that the learners were able to calculate distanc-
es as this would help them in their NSC tasks.
However, knowledge gaps were evident when
learners were unable to find the measurements
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of angles. These knowledge gaps may have
contributed to lower overall mean learner per-
formance as shown in Table 6. This creates op-
portunity for future research on exploring links
in learning mathematics concepts in Analytical
Geometry, Euclidean Geometry and Transforma-
tion Geometry.

In both schools confusion of the kinds of
transformation in the tasks was observed, this
was especially noticeable in the reflection along
the x- axis and the reflection along the y-axis. It
is hoped that this confusion could be resolved
atthe early stages of mathematical development.
Mathematics teachers should adhere to teach-
ing methods involving similar tasks as well as
providing appropriate feedback after assessing
these tasks. Of course providing relevant feed-
back depends on the pedagogical knowledge of
these teachers and suggestions are made by
Bansilal et al. (2014) and Brijlall and Maharaj
(2015). Category D interviewed learners in both
schools performed well in questionnaire 2. It is
hoped that the introduction of Transformation
Geometry in grade ten could then contribute to
the improvement of the understanding of con-
gruent triangles and vice versa.

CONCLUSION

In the course of this study, it was found that
learners from school A confuse parallel and equal
lines; the learners displayed the misconception
that a pair of parallel lines in a quadrilateral im-
ply equality of the length of the lines by using
the symbols “="and “//”. According to discus-
sions with teachers in the district cluster work-
shops, this appears to be common practice in
mathematics classrooms. At the introductory
phase of the teaching of quadrilaterals, it may
be more effective to provide a larger number of
examples with one condition, without the other.
The examples in Figure 3 could be used:

In the above case where AD = BC learners
could be asked to discuss whether AD is paral-
lel to BC.

In school B, learners appeared to use improp-
er geometrical reasoning. When they were giv-
en a quadrilateral as a parallelogram, the learn-
ers argued that opposite sides are equal because
it was given, rather than using the reason: “op-
posite sides of parallelogram are equal”. The
learners’ method of reasoning thus left the re-
searcher doubting whether they properly un-
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In the above case learners could be asked: Is “AB=DC?

A B

(i)

Fig. 3. Examples to enforce relationships between
equality and parallel

derstood the properties of a parallelogram.
When engaging learners with tasks that involve
the properties of a quadrilateral, teachers would
need to first emphasize the procedure for solv-
ing riders. Learners appeared to be unable to
use the reasoning of “given” properly. More
examples of riders involving the reasoning of
“given” and the properties of quadrilaterals may
help clarifying this mistake.

It was found that learners prefer using visu-
alization to arrive at conclusions rather than
mental construction. This may be a factor con-
tributing to the difficulty in proving Euclidean
Geometry theorems and riders. This was ob-
served particularly when a learner indicated that
a corner of a house is equal to 90°. If teachers
were to teach more examples of angles that are
very close to a 90° (like 92° or 89°); it may well
help resolve this misconception. Other poten-
tial examples could include quadrilaterals that
look like a square, a rhombus, parallelogram or a
rectangle. Learners could be asked to measure
the lengths of the opposite sides of these fig-
ures so that they could see that these figures
are not as they appear to be.

In number three of the questionnaire, very
few learners who participated in the research
could correctly answer and identify the case of
90° H, S in proving congruency. This would seem
to indicate that learners are not as familiar with
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this case of congruency as they should be at
grade ten. A quick perusal of mathematics text-
books reveals that even mathematics authors
do not appear to include as many examples of
the 90°,H, S as other cases like S, S, S; S, A, S and
A, A, S. Experience has also shown that even in
the classroom this case of congruency is rarely
done; probably because most teachers rely on
textbooks when preparing for lessons.

It was also found that assessing learners’
knowledge of congruent triangles in the context
of quadrilaterals (like a parallelogram, a rhom-
bus or a rectangle) does not give a clear indica-
tion of the learners’ knowledge of congruent tri-
angles. It was observed in some cases that learn-
ers did not possess adequate knowledge of the
properties of quadrilaterals and hence could not
prove congruency. This would seem to be an
indication of the knowledge gaps learners de-
velop when leaving for the next grade. This ap-
pears likely to result in high levels of rote learn-
ing; especially in concepts like the four cases of
congruency. More time needs to be spent on
teaching of the basic properties of figures like
regular quadrilaterals and triangles at the appro-
priate level of learning.

The overall finding in this research is that
school B performed almost two times better than
school A in the formal tasks. This was deduced
from the mean performance in each task, as well
as the overall mean performance on the whole
questionnaire illustrated in Figure 6. An inap-
propriate van Hiele level could be the cause of
poor performance of learners in this question-
naire. This was apparent as learners could not
answer questions related to alternate angles while
proving congruency. One can then conclude that
informal reasoning could be introduced to the
learners while they are studying Euclidean Ge-
ometry especially the properties of geometrical
shapes and patterns. While this is done the
teachers has to ensure that learners are at the
appropriate van Hiele level for that particular
grade.

Recalling the critical research question, we
acknowledge that the children’s written respons-
es and the analysis thereof do not convincingly
identify one type of reasoning advantageous
over the other. Also, this is a case study and so
results cannot be generalized. However, those
pedagogical implications which arose from the
data were rich and make reliable recommenda-
tions for the teaching and learning of congruen-
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cy of triangles. Also, it was found that the inter-
vention of the questionnaires effectively man-
aged to integrate the two types of reasoning.

RECOMMENDATIONS

The researcher recommends that the editors
of mathematics textbooks rectify this situation
by including as many of these types of cases as
possible. Many mathematics teachers (especial-
ly inexperienced teachers) are likely to rely inor-
dinately upon the use of textbooks in their teach-
ing. With this recommendation, the researcher
hopes other misconceptions around this case
could be solved. For example, other learners in-
volved in this study confused the 90°.H, S case
with the S, A, S case. Teachers need to empha-
size that the angle in this case is the included
one. Thorough teaching of congruency using
relevant examples could overcome this problem.
For example the learners can be asked to attempt
the task in Figure 4.

Fig. 4. Discussing whether the two triangles are
always congruent

Some learners in task four seemed to be-
lieve that all alternate angles are equal in a quad-
rilateral. This was observed when learners indi-
cated a pair of alternate angles equal when this
was not the case. The researcher is of the view
that this problem is caused by the tendency to
introduce alternate angles (only) when teaching
parallel lines, (and hence in this case the angles
are equal). Experience has shown that very few
teachers expose learners to alternate angles that
are not equal. This problem could be a factor
contributing to the poor performance of learn-
ers in National Senior Certificate assessment (fi-
nal high school examination), and one is led to
suspect that the same may well happen for cor-
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responding and co-interior angles. Teachers may
need to provide more counter-examples before
introducing the concept of parallel lines. An ex-
ample of this appears in Figure 5. The learners
could be asked to name a pair of alternate angles
in Figure 5, measure each of these alternate an-
gles and discuss their relationship.

B D
/
| I
~ /
0/
— " /
> /
~ I #
- /
- /
A _
~ /
e {
| /.f'
4

Fig. 5. Illustrating that not all alternate angles
are equal
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APPENDIX
Questionnaire 1: Euclidean Geometry Statement Reason
A = i (e )
1.1 Below is parallelogram ABCD. e = (Alternate angles, AB // DC)
BD = BD (ceetiiiiiiieiiiinieee e )
S0, AADB =ACBD  (cceeoiiiiiiiiiiiiiiees eeenienne, )

A B
Prove that AADC = A CBA by completing the following
statements:

Statement Reason

AB = ... (et et e )
AD= .. (O )
AC=

S0, A ADC = A CBA (ooooresoooosoeosn oo oo
1.2 Below is isosceles A ABC with AB = AC. DA bisects
A.
A

B C D

Prove that A ABD = AACD by completing the following

statements:
Statement Reason
e T (given)
A o= (et et e )
AD=AD (et et e )

So, A ABD=A ADC (..cccceeeueenne.
1.3 Below is quadrilateral ABCD with A = C = 90° and
AB = DC.

Prove that AABD = ACDB by completing the following
statements:
Statement

Reason

A B
Jr—— rl
f T 1 f
[ - /
'll."[ e !
-ill --\------ e 'II.
cl T2/ D

Prove that AADB = ACBD by completing the following
statements:

Questionnaire 2: Transformation Geometry
Study the diagram below and then complete the tasks
that follow:

A(-2:3), Y4

C(-5: -1)

A ABC is translated by the rule: (x, y) > (x + 1, y + 2).
Draw both AABC and its image AA’B’C’ on the same
set of axis on the graph paper provided. Complete the
following statements by accurately measuring:

(b) Study the diagram below and then complete the
tasks that follow:
y

AC-34) A
I "

; [
L1
Y

C(-5:)——p( 121y
T +

X

In the above diagram, AABC is reflected about the y-
axis. Draw both of AABC and its image AA'B'C’ on the
same set of axis on the graph paper provided. Complete
the following statements:

AB = AB’ =

BC = BC =

S0 AABC = AA’ B’C’ (cvveeiiiin eeviiiiiiiiien)

(c) Study the diagram below and then complete the
tasks that follow:

y

(A 317N

B 1:3) £ S (C5:3)

In the above diagram, AABC has been rotated through
180° clockwise. Draw both AABC and its image AA’B’
C’ on the same set of axis on the graph paper
provided.Complete the following statements by
accurately measuring:
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A = A2 =
C = L C=
BC = . BC =

S0, AABC = AAB'C (coovooors o)
(a) Study the diagram and then complete the tasks that
follow:

(B -6:4) [~ y

B -6:1)" " -1:1)

* X

In the figure above, AABC has been reflected along the
x-axis. Draw both AABC and its image AA'B'C’ on the
same set of axis.Complete the following statements by
accurately measuring:

B’ =
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Semi-structured Interview Questions

(a) Do you enjoy learning Euclidean Geometry? Why?

(b) Do you feel that the teachers can use other ways to
teach Euclidean Geometry? Explain.

(c¢) Do you think that most learners enjoy working on
problems involving congruency? Why do you think
this is so?

(d) Tell me what we mean when we say “the two
triangles are congruent”?

(e) Can you explain the cases of congruency? How
many cases are there?

(f) Give me an example of two triangles that are not
congruent.

(g) Can you tell me in Questionnaire number 2, what
types of Transformation are displayed in each case?

(h) In which tasks did you enjoy working with? Why?

(i) Would you prefer using Transformation Geometry
when studying ideas in Euclidean Geometry?



